On semigroups of transformations that preserve a double direction equivalence

نویسندگان

چکیده

Abstract For a non-empty set X X , denote the full transformation semigroup on by T ( ) T\left(X) and suppose that E E is an equivalence relation . Evidently, xmlns:m="http://www.w3.org/1998/Math/MathML" display="block"> ∗ = { α ∈ ∣ x , y width="0.1em" if only if for all } {T}_{{E}^{\ast }}\left(X)=\left\{\alpha \in T\left(X)| \left(x,y)\in E\hspace{0.33em}\hspace{0.1em}\text{if if}\hspace{0.1em}\hspace{0.33em}\left(x\alpha ,y\alpha )\in E\hspace{0.33em}\hspace{0.1em}\text{for all}\hspace{0.1em}\hspace{0.33em}x,y\in X\right\} subsemigroup of In this article, we investigate Green relations, \ast -relations ∼ \sim -relations, various kinds regularities, ℱ {\mathcal{ {\mathcal F} }} -abundant mathvariant="script">G {\mathcal{G}} elements left right magnifying in }}\left(X) More specifically, first obtain necessary sufficient conditions under which mathvariant="script">ℒ L} (respectively, {{\mathcal{ }}}^{\ast } ˜ \widetilde{{\mathcal{ }}} mathvariant="script">ℛ R} ) (left, right) compatible, }}={{\mathcal{ or }}=\widetilde{{\mathcal{ Then, give such regular regular, completely intra-regular, simple). Finally, characterize -abundant)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On certain semigroups of transformations that preserve double direction equivalence

Let TX be the full transformation semigroups on the set X. For an equivalence E on X, let TE(X) = {α ∈ TX : ∀(x, y) ∈ E ⇔ (xα, yα) ∈ E}It is known that TE(X) is a subsemigroup of TX. In this paper, we discussthe Green's *-relations, certain *-ideal and certain Rees quotient semigroup for TE(X).

متن کامل

on certain semigroups of transformations that preserve double direction equivalence

let tx be the full transformation semigroups on the set x. for an equivalence e on x, let te(x) = {α ∈ tx : ∀(x, y) ∈ e ⇔ (xα, yα) ∈ e}it is known that te(x) is a subsemigroup of tx. in this paper, we discussthe green's *-relations, certain *-ideal and certain rees quotient semigroup for te(x).

متن کامل

Coverings that preserve sense of direction

Sense of direction is a property of labelled networks (i.e., arc-coloured graphs) that allows one to assign coherently local identifiers to other processors on the basis of the route followed by incoming messages. We prove that (weak) sense of direction is preserved by the construction of regular coverings (i.e., coverings induced by voltage assignments in a group) whose voltage assignment depe...

متن کامل

On Transformations of Interactive Proofs that Preserve the Prover's Complexity

Goldwasser and Sipser [GS89] proved that every interactive proof system can be transformed into a public-coin one (a.k.a., an Arthur–Merlin game). Their transformation has the drawback that the computational complexity of the prover’s strategy is not preserved. We show that this is inherent, by proving that the same must be true of any transformation which only uses the original prover and veri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Open Mathematics

سال: 2023

ISSN: ['2391-5455']

DOI: https://doi.org/10.1515/math-2022-0606